

HIVAC (High Voltage chip Analysis Circuit)

Aaron Koga May 8, 2007 Physics 476

OUTLINE

Introduction

PanSTARRS

High Voltage Chip

HIVAC design, layout

Current status

Future plans

INTRODUCTION (PanSTARRS)

University of Hawaii Institute for Astronomy

Panoramic Survey Telescope And Rapid Resonse System

"…discover and characterize Earth-approaching objects, both asteroids & comets, that might pose a danger to our planet."

- 4 optical systems
- Observe entire sky few times/month

INTRODUCTION (PanSTARRS Optical System)

- 1.8 m mirror
- OTA (Orthogonal Transfer Array)
 - 8x8 array of CCD's (Charge Coupled Devices)
 - 1.4 gigapixels
 - Compensate for atmospheric distortion (tip-tilt corrections)
- MOTA (Mini-OTA)
 - 2x2, some testing of advanced features

Keep cool to make measurements

INTRODUCTION (PanSTARRS & HV Chip)

- Want to make OTA controls automated
- STARGRASP
 - Controller to read OTA
- Problem: OTA uses higher voltage logic levels
- Solution: CID HV Chip designed (CMOS Interface Device for High Voltage)
 - High drive strength
 - Integration with CCD

INTRODUCTION (HV Chip)

- 0 to 3.3V input,
 -3.3 to 16.7V output
- Expect to drive 50pF & 1000pF loads
- 4 different high voltage levels

INTRODUCTION (HV Chip)

- Monitor outputs for logic to MOTA
- Test structures for future ADC

- Test HV Chip into capacitive load
 - rise time, operating range, etc
 - Measure with oscilloscope
- Connection to daughter board with MOTA
- USB communication

HIVAC (Overview)

- 113 pads on chip, 100 pin package →
 2 bonding layouts
- Functional: control of MOTA & monitor outputs
 - Test: test structures

HIVAC (HV Chip Bonding)

36 load caps

HIVAC (Connector/ADC)

- 18 signals output to daughter
- 4 signals in from daughter
- ADC / level shifting
 - IFA design
 - 16 bit ADC

HIVAC (USB)

Cypress USB

HIVAC (Power Supplies)

26 total

- 8 for general use
- 10 for HV Chips
- 8 for daughter board
- +20V, -20V to from supply

CURRENT STATUS

One HV Chip bonded

Functional: daughter board outputs

CURRENT STATUS

- Board partially assembled
- No connector & ADC circuit
- No USB
- Attempting to get HV Chip to work

FUTURE PLANS

Board assembly as needed

Testing of all 36 outputs into capacitive loads

Firmware/Software

- ADC readout
- USB control

Testing with MOTA

REFERENCES

- "PanSTARRS", <u>http://pan-starrs.ifa.hawaii.edu/public/</u>.
- Burke, Barry E., et al, Development of the Orthogonal Transfer Array, 2006SPIE.6068..173B.
- Burke, Barry E., et al, The orthogonal-transfer array: a new CCD architecture for astronomy, SPIE Volume 5499.
- "HV Project", <u>http://www.phys.hawaii.edu/~bellepix/hv/index.htm.</u>